

BCO Network WEBseries: Quality of Service (QoS), measuring for satellite

25 February 2025

Speakers:

Pietro Pantalissi, DGCOMP

Antonio de la Oliva Delgado, University Carlos 3 Madrid

Carlos J. Bernardos, University Carlos 3 Madrid

Funded by
the European Union

www.bconetwork.eu

BCO Network

Quality of service methodology for satellites in Europe

Antonio de la Oliva
Carlos J. Bernardos

{aoliva, cjbc}@it.uc3m.es

Study to develop a
Quality of Service
methodology for
satellites in
Europe

This presentation discusses the QoS methodology for satellites in Europe as presented in the BCO Network publication

Outline

- Contents of the study
- Methodology and information required
- Summary/applicability for LEO
- Numerical example for LEO
- Summary/applicability for GEO
- Numerical example for GEO
- Annex 1: Detailed technical report on available satellite technologies and operators

Contents of the study

CONTENTS

I. Introduction.....	4
II. Findings.....	6
III. Methodology for capacity calculation.....	8
Introduction.....	8
Low Earth Orbit (LEO) constellations	9
Methodology for LEO: main steps using the aforementioned data.....	9
Numerical example for a LEO constellation.....	11
Geostationary Earth Orbit (GEO) constellations.....	19
Methodology for GEO: main steps using the aforementioned data.....	19
Numerical example for a GEO constellation	20
IV. Marketing Internet-satellite offers and associated SLAs.....	23
Maximum Guarantees without Minimum Service Guarantees for Satellite Operators	23
Examples of Service Policies of Major Operators	23
Current Commercial offers of some satellite operators	23
V. Annex 1: Detailed technical report: available satellite technologies and operators	25
SpaceX / Starlink technology.....	26
Oneweb	30
Telesat / Lightspeed	32
Amazon / Kuiper	34
SES.....	36
Eutelsat Konnect	38
Viasat.....	40
skyDSL	42
Avanti	44
Summary of the performance of the analyzed satellite services	46
Comparative graphs between operators	47
Additional specifications	49
VI. Annex 2: Additional Information on Policies and Commercial Offers of Satellite Operators in Rural Zones.....	53
1. Starlink.....	53
2. Viasat	53
3. Eurona with Hispasat.....	54
4. Movistar Satellite	54

Three main aspects considered:

- Limitations of the study in section II.
- Methodology and numerical example for LEO and GEO in section III.
- Examples of advertised SLAs in commercial offerings in section IV.

Annexes include:

- detailed technical description of satellite offerings (Annex 1),
- policies and commercial offers (Annex 2).

Methodology

1. Define the study area to the satellite provider technology
2. Indicate orbits and satellite coverage
3. Indicate min/average/max number of satellites serving the area
4. Indicate capacity per satellite/beam
5. Compute min/average/max capacity provided in the region
6. Compare with the required capacity at peak hour

This methodology is similar to the one proposed for Starlink RDOF Assessment by NCTA – The Rural Broadband Association (and executed by Cartesian)

Information required

1. Data that must be provided by the funding authority:

Parameter	Units
Area of the region	Km ²
Location	Latitude and Longitude coordinates
Target population	Thousands, % to be provided with the service
Minimum rate provided	Mbps

The peak time is computed as the % of the target population (i.e., 15% of the total population) at the Minimum rate provided.

2. Data that must be provided by the LEO Satellite Operator:

Parameters	Units
Minimum, Average and Maximum number of satellites covering the region	number
Minimum number of beams for min/avrg/max number of satellites covering the region	number
Bw per beam	Mbps
Over-subscription rate	ratio

Summary for LEO- Average

Based on average number of satellites observed in an area:

- Compute the total area of coverage for the service (based on operating latitudes of the satellite shells):

$$A_{\text{tot}} = 2\pi R^2(1 - \sin \theta_{\text{max}})$$

- Compute the satellite density:

$$\rho = \text{Total Number Satellites}/A_{\text{tot}}$$

- Compute average number of satellite covering a region:

$$N_{\text{sat}} = \rho \times Area_{\text{Region}}$$

Summary for LEO

- Compute overall capacity in the region based on:

$$C = N_{\text{sat}} \times N_{\text{beams}} \times BW_{\text{beam}}$$

- Compute target population (e.g., based on households to be covered):

$$P_{\text{target}} = \text{Percentage}_{\text{target}} \times \text{Total}_{\text{population}}$$

- Consider the oversubscription rate to compute capacity per user:

$$C_{\text{user}} = \frac{C}{P_{\text{target}}^t} \times \text{Oversubscription}_{\text{rate}}$$

Numerical example for LEO

- Based on public data from Starlink and a rural area in Spain (100 Mbps per user)

# of beams per region	Min # of satellites (2)	Avg. # of satellites (3)	Max # of satellites (8)
1	842.5 Mbps	1263 Mbps	3791 Mbps
8	6740 Mbps	10110 Mbps	30330 Mbps
48	40440 Mbps	60660 Mbps	181980 Mbps

# of beams per region	Min # of satellites (2)	Avg. # of satellites (3)	Max # of satellites (8)
1	8 users	12 users	37 users
8	67 users	101 users	303 users
48	404 users	606 users	1819 users

Summary for GEO (assumption: 1 satellite)

- Given the area covered by beam (A_{beam}) and the capacity per beam (C_{beam}), compute the total capacity covering the target area of study (A_{target}):

$$C_{area} = \left\lceil \frac{A_{target}}{A_{beam}} \right\rceil \times C_{beam}$$

- Compute the ration between the population in the target area (P_{target}) and the population illuminated by all beams in the geographical area:

$$P_{illuminated} = \rho_{population} \times \sum_{1}^{\left\lceil \frac{A_{target}}{A_{beam}} \right\rceil} A_{beam}$$

Summary for GEO

- Compute the ratio between the illuminated population and the target population:

$$R_{population} = \frac{P_{target}}{P_{illuminated}}$$

- Compute the available capacity per user, accounting for the over-subscription rate:

$$C = R_{population} \times C_{area} \times Oversubscription_{rate}.$$

Numerical example for GEO

- From publicly available data (from Viasat 3):
 - Total capacity of the satellite: 1 TBps .
 - Total number of beams: 2000.
 - Capacity per beam: $1 \text{ TBps}/2000 = 4 \text{ Gbps}$.
 - Area covered per beam = 20,000 Km² (this data is not trivial to compute and variable).
- Illuminated population 250K, Population covered (12,5persons/Km², 4/household, 15% rate) 9375, Target population 3329 (15% of 88796)
- Rate between target and covered population = 0.35
- The total capacity in a beam is 4 Gbps, therefore, the capacity in the target area is:
 $4 \text{ Gbps} * 0,35 = 1,4 \text{ Gbps}$. Per user, $1,4/3329 = 0,42 \text{ Mbps}$ approx.

Annex 1: Detailed technical report on available satellite technologies and operators

For:

- SpaceX / Starlink
- Oneweb
- Telesat / Lightspeed
- Amazon / Kuiper
- SES
- Eutelsat Konnect
- Viasat
- skyDSL
- Avanti

Report on the following:

- Radio technology used
- Number of beams per satellite
- Sat-to-Earth and Inter-Satellite bands
- Type of constellation and altitude
- Planned deployment phases, dates, and current status
- Throughput per satellite and aggregate
- Coverage areas and geographic zones covered
- Compatibility with mobile terminals
- Commercial availability by Country/Region

Service provider	Constellation type	Altitude (km)	Download speed (Mbps)	Upload Speed
SpaceX/ Starlink	LEO	540-570	100-200 (up to 300)	10-40
OneWeb	LEO	1200	50-100	5-20
Telesat/ LightSpeed	LEO	1015-1325	50-150	10-30
Amazon/ Kuiper	LEO	590,610,630	~100	10-25
Eutelsat Konnect	GEO	35786	50-100	6-20
Viasat	GEO	35786	12-100	3-30
SkyDSL	GEO	35786	20-50	2-6
Avanti	GEO	35786	30-60	6-15
SES	MEO/GEO	8000 (MEO) / 35786 (GEO)	50-500	10-50

Thanks!

Antonio de la Oliva
Carlos J. Bernardos

{aoliva, ccbc}@it.uc3m.es